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Tracks of Symmetric Top Molecules in Hexapole Electric Fields

Roger W. Anderson

Chemistry Department, Unérsity of California, Santa Cruz, California 95604 and Zentrum fu
Interdisziplinae Forschung, Uniersité Bielefeld, Bielefeld, Germany

Receied: April 16, 1997; In Final Form: June 13, 1997

The trajectories of symmetric top molecules are computed in hexapole electric fields. The transmission of a
hexapole for linear Stark effect focusing is compared with that due to the exact interaction of the electric
field with the symmetric top molecule. The use of the exact interaction in place of the linear Stark effect
produces significant changes in the position and shape of the transmission peaks. Focusing curves are also
calculated assuming the Stark effect calculated to second order. The nuclear quacklgodiie field gradient
interaction is found to significantly affect the focusing of €Hand it is possible to produce a beam of
rotational state selected and partially spin polarizedlCHhe focusing for the usual experimental hexapole
composed of cylindrical rods is compared with the focusing for an ideal hexapole, and a finite difference
technique is used to determine the cylindrical rod radius that will provide the best approximation to an ideal
hexapole field. This best rod radius is 0.565 of the hexapole radius, and focusing curves are shown for this
choice of rod radius. A computer program to calculate trajectories for experimental hexapole arrangements
with exact Stark interactions is available.

1. Introduction fields where the radius of the rods,, is half of the hexapole
radius,ro (half of the distance between the inside surfaces of

It has been known, for more than 40 yeathat symmetric the diametrically opposed rods). This choice for the rod radius
top molecules can be focused by means of the first order Starkwill make the radii of curvature of the electric potential and
effect in hexapole electric fields, and the first experimental the electrodes equal at the distamrg@ Other workers have
confirmations of the technique occurred more than 30 year$ ago. usedpy to ro ratios of 0.667 and 0.560:2
There have been many applications of this hexapole focusing This paper will first explore the effects of higher order terms
technique in the intervening years, and the same physics thatin the Stark effect. These will be done in two ways: effects
allows focusing of specificlJKMO states also allows the  on the force that the symmetric top molecules experience and
specification of the orientation of the dipole moment (Symmetry consequences of the changes in the force for the trajectories.
axis) of the symmetric top molecules. This observation has We will then show the effects of hyperfine interactions on forces
allowed exploration of steric effects in bimolecular gas phase and trajectories. Finally we will investigate trajectories in
reactions (for reviews see refs-3) and direct determination  cylindrical rod approximations for hexapole electric fields.
of orientation by photodissociatibhand electron diffractiof-11

However, linear Stark focusing is an approximation that is 2. Theoretical Preliminaries
valid only for hexapole electric fields that are not too large, for
molecules without large hyperfine interactions, and for ideal ~ 2.1. Interaction Energy. Here we consider the interaction
hexapole fields. Inclusion of these complicating effects is likely energy of polar symmetric top molecules in electric fields. We
to alter the position, shape, and size of the peaks in the focusingWill look at this problem with several degrees of approximation
curves. In this paper we investigate the effects of higher order Of complexity. The HamiltonianH, for a symmetric top
terms in the Stark effect, hyperfine interactions, and nonideal molecule in an electric field can be written as the sum of three
hexapoles. This work is the first systematic investigation of terms:
these focusing complications, although several other authors
have addressed aspects of the problem. The focusing effects H=H,+Hy—uwE 1)
of the second order Stark effect has been studied recEntly,
and empirical attempts have been made to account for higher The first term in eq 1 is the Hamiltonian for the field free
order Stark effect$314 Bulthuis et al1516 have explored the ~ Symmetric top neglecting hyperfine interactions, and the second
effect of hyperfine interactions on the degree of orientation that term describes the energy due to nuclear hyperfine interactions.
can be achieved with a molecule such as;Chiut they do not ~ This term is dominated by nuclear quadrupole mormeitectric
investigate the effects of hyperfine interactions on focusing. field gradient interactions. The third term describes the interac-
Several papers have proposed or used different methods tdion of an applied electric field with the dipole momentof
experimentally approximate hexapole fields, but none have the molecule.
presented trajectories for symmetric top molecules in the The interaction energyy, of the molecule with an applied
approximate hexapole fields. The UCLA hexapole experiments electric field is defined as
use specially machined electrodes that closely approximate the
ideal hexapole equipotentials® but most of the hexapole W=¢€—¢, ()
experiments use cylindrical rod approximations to hexapole

whereeg is the energy of a state with an applied electric field,
t E-mail address: anderso@cats.ucsc.edu. E, andeo is the energy with no applied electric field. The energy
® Abstract published irAdvance ACS AbstractSeptember 15, 1997.  of the molecule in an electric field can be estimated with first

S1089-5639(97)01313-3 CCC: $14.00 © 1997 American Chemical Society




Symmetric Top Molecules in Hexapole Electric Fields J. Phys. Chem. A, Vol. 101, No. 41, 1997665

order perturbation theory for weak fields, with second order second order or quadratic Stark effect will be present for all
perturbation theory for somewhat stronger electric fields, and symmetric tops and linear molecules.

with basis set expansions (exact treatment) for strong electric  The interaction energy due to the coupling of madMO
fields. In this paper we only consider electric fields that couple states by the electric field is easily calculated by expanding the
rotational states of the symmetric top, and we do not consider wave function for the system in the electric field as

very strong electric fields (above 100 kV/cm) that may mix

electronic states. Jrmax
The actual calculation of the interaction energy depends on KM= ¢,|IKMO 7)
whether the hyperfine interaction terfig, is neglected or not. J=malqK], M)
If the hyperfine term is neglected, then the eigenfunctions of
Ho are described by the quantum numbgrk, andM, which The energy eigenvalues and the eigenvectoks afe then found

are the total angular momentum of the symmetric top, the py diagonalizing the matrix dfi in the |[JKMbasis. Examina-
projection of the total angular momentum on the unique tion of eq 4 shows that this matrix will be tridiagonal because
principal axis of the top, and the projection of the total angular for | = 1 the angular momentd — J| must be less than or
momentum on the space fixéflaxis. The rotational eigen-  equalto 1. For our purposes the eigenvectors are not necessary
funCtIOﬂS Of a Symme'[l’lc tOp are g|Ven as rotation matr?@es: because there are no avo|ded Crossn‘]gs |n the Spectr&hasf
034 1712 a function ofE. However, the eigenvectors are important in
+ I P ot « P :
|IKMU= 5| Dwk(:.0:0) 3) other similar applications such as “brute force” orientation of
8 molecules. Here eigenvectors are important for fully quantify-
ing the prepared Legendre momef®@{co¥)0).
The rotational energy levels (diagonal elements)Hgrare ¢o The nuclear hyperfine coupling term should not be neglected
= hcBJJ + 1) + ho(A — B)K?, and the energy for increasing for symmetric tops that contain heavy atoms with nuclear
K increases if the symmetric top is prolafex B) and decreases  quadrupole moments such as iodine. Quadrupole moments are

if the top is oblate A < B). The rotational constan# andB possible whenever the nuclear spir; /,, and in this case the
are expressed in units of cth calculation of the electric field interaction energy is somewhat
The electric dipole-electric field interaction is easily written ~ more involved. It is convenient to work in the coupled basis
as —uE cos § = —uEPy(cos 0), where P; is the Legendre where the rotational angular momentJdrof the symmetric top
polynomial of order 1. We will see with this observation that is summed with the nuclear spin angular momentuof the
calculations will need evaluations of the matrix elements: atom to produce a total angular momentEmThe magnitude,
F, takes all integral or half-integral values frgch— I| to |[J +
L'K'M'| P |JIKMO= [] in unit steps. The eigenstates ldf with nuclear coupling

JL g JL g are ch_aracterized by _the_ good quantum numb‘érgnd a
,)( ,) projectionMg. The projectiorMg = M; + M;, whereM; is the
MO M/A=K 0 K projection ofJ andM, is the projection of. (In the discussion
(4) above about the case without nuclear hyperfine interactins,

) ) was used to denot®l;.) We see that the hyperfine coupling
where Wigner Bsymbols are use®. These equations show  gcrambleg and its space fixed projectiovy. Since the nuclear
that an obvious requirement for nonzero matrix elements is that hyperfine coupling does not mix valueskfthe basis functions
M= M"andK = K. ) _ o in the hyperfine case becongll} KFMeL] where the notation

The energy of the symmetric top in an applied field can be ngicates that] and| couple to together to forrf.
evaluated in different approximations. For first order perturba- For molecules without unpaired electrons the most important
tion calculations the interaction energy is given as the diagonal part ofHo is the interaction of the nuclear quadrupole moment
elements for eachlKMUstate: with the electric field gradient at the quadrupolar nucleus, and
we neglect the much smaller nuclear spiotational coupling.

w® =—uEQDKM|P,|JKMO= _#% (5) The explicit form for the term in the Hamiltonian'fs

GV R (PARSE AR 1)]”2(_

—v®@.0?
after explicit evaluation of thej3symbols. This shows that Ho=V"Q ®)

linear molecules without excited bending vibrations and diatomic . )
molecules without unpaired electrons do not exhibit linear Stark WhereQ® is the quadrupole tensor of the nucleus el is
effects, because in these cases= 0. For molecules with a  the electric field gradient tensor at the nucleus.
nonzero produd¥IK the interaction energy may either increase ~ The matrix elements dfiq in the coupled basis are obtained
or decrease with increasirigy depending on whether the sign  with the aid of the following equation (after 5.79):
of the product is negative or positive.

The contribution to the interaction energy from second order [ y1} KFM.|V®@-Q®@|{ JI} KFM =
perturbation theory is evaluated?as

JIF
(—1)”'*F{I 3 2}D'K||v2||JKDan2||ID(9)

W = L ol = KIF —M] o _ -

J3(2J —1)(21+1) where a Wigner gsymbol is used, and it is explicitly stated

2 2 2 2 that only states with the sante and Mg are coupled byHo.
[0+ 1) — K+ 1) — M7 (6) The last two angular bracketed quantities are reduced matrix
@+ 13RI+ 1)+ 3) elements.
The reduced matrix elements efu-E in the coupled basis

whereQ= (uE)/(hcB) is the commonly used ratio of the dipele are obtained with the aid of the following equation (after
electric field interaction to the “rotational” enerdgycB. The 5.7229):
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INKF|| — uD-E[{ I} KFC=
(=1 FUE[2F + 1)(2F + 1)]1’2{JF 5 '1} K| |P,[|IKD
(10)

where it is seen that-E can couple states with differedtand
F.

Equations 9 and 10 are easily evaluated once the reduce
matrix elements are known; however, obtaining the correct
reduced matrix elements is often the most troublesome aspec
of working with spherical tensors. Of course the key to
assignment of reduced matrix elements is the Wigtterkart
theorem. Here we write Zare’s eq 5.14 to specify this theorem:

J kJ

[0/ I M| Tyl IMC= (—1)J’M’(_M, q M

)IZiL’J||Tk||0LJD
(11)

The Wigner-Eckart theorem can now be used to evaluate the

Anderson

Jand F = F. These diagonal elements have the values,
hcBJJ+1) + ho(A-B)K2. The above formulas have been
checked by expanding thg 8nd § symbols in their algebraic
form and comparing them with the equations in Gordy and
Cook?!

We conclude this section with the observation that other
interactions of external fields with molecules can be handled

dNith the equations of this section. In particular the interaction

of the gradient of an applied electric field with the electric

tquadrupole moment of a symmetric top molecule can be
evaluated with eq 4 for the case in which hyperfine interactions
are neglected. The spherical tensor formalism will allow
evaluation of matrix elements for this case when hyperfine
interactions are not neglected.

2.2. Trajectories. The main goal of this paper is to explore
the trajectories of symmetric top molecules in more or less
axially symmetric electric fields. We treat the motion in ideal
or approximate hexapole fields, because such trajectories are
necessary for modeling molecular beam experiments. The ideal

necessary reduced matrix elements. The reduced matrix elemenkexapole electric fields are axially symmetric, but experimental

of V2 is the most perhaps the most difficult because the electric
field gradient at the nucleus is specified with a vakg2, along
the molecular axis that rotates with the molecule. The projection
of this field gradient must be found on the space fixebaxis.
With this in mind the reduced matrix element ¢t is found
after several steps after first recognizing that the quantum
numbera in eq 11 must b&. Then
D’Km|v§|JKmD=%%'Kmpzur(mm (12)
wherem?’ = min(J',J). Now using the WignetrEckart theorem
and eq 4, it is easy to derive that

K| VA |IKO=

%ec(_l)Kﬂ'[(ZJ +1)(2y + 1)]1/2( J 233

-K 0 K) (13)

The reduced matrix element @® is easier because the
nuclear quadrupole mome/2, is already defined with respect
to the space fixedZ axis. We have immediately from the
Wigner—Eckart theorem (wititM, = | ) that

I 21)_0Q
The reduced matrix element @f?) is often written simply a$
+ 3)] 1/2

w2 1)-3 (14)

@ + 1) + 1)@
12l — 1)

210=
Q=3

(15)
The last reduced matrix element that we need is
J 11

K 0 K)
(16)

K| [P, [IKC= (—1)[(23 + 1)(2r + 1)]1’2(

and then the matrix elements efu-E can be evaluated with
the Wigner-Eckart theorem as

(I} KFM,| —u-El{ I} KFM =
wf F1F

— 1\ Mg

(=1) (—MF 0 M

Matrix elements oH are easily evaluated with the preceding
formulas. In addition to the diagonal and off-diagonal contribu-
tions ofHg and—u-E, the[{J' 1} KF'Mg|Hol{ JI} KFMeCelements
have nonzero values only for the diagonal elements wiliere

)[ﬂJ’I}KF'H — uME|{INKFOL7)

implementations commonly use cylindrical rods with the
diameter of the rods equal to the radiug, of the hexapole
which is half of the distance between the inside surfaces of rods
on opposite sides of the hexapole. We will see that the electric
field of this approximate hexapole has significant deviations
from axial symmetry.

To allow convenient calculation with electric fields that
deviate from axial symmetry and to follow trajectories that do
not have simple radial motion, we use Cartesian coordinates,
andy, to describe the motion in planes perpendicular to the
axis of the hexapolezl. We need to be able to follow the
classical trajectory of a molecule that enters the hexapole field
at the positionxp, yo) with velocitiesvyo, vyo, andu, in order to
find the exit position X%, yi) and exit velocitiesy, vy, andv,
after traversing lengthof the hexapole. We assume thats
constant, that molecules disappear (pumped away) when they
have a radius greater thag and that there is no scattering by
background gas within the hexapole (high-vacuum operating
conditions). We also neglect the hexapole fringing electric
fields.

The classical trajectories are described by Newton's equations
as

dx_ 18w
d? m ox
dy_-1w (18)
da  m dy

whereWi s defined by eq 2 anthis the mass of the symmetric
top molecule. Now the interaction energy is a functioneof
and various molecular parameters and quantum numbers, so it
is useful to write the trajectory equations as

dx _ ~1dwoE
g2 m dE dx
d’y _ —1dWE
d2 m dE ay (19)

where the partial derivative is evaluatedaty and the ordinary
derivative is evaluated &i(x, y). The forces that the molecule
experience depend on the functional form of the interaction
energy as a function of the electric field and on the functional



Symmetric Top Molecules in Hexapole Electric Fields J. Phys. Chem. A, Vol. 101, No. 41, 1997667

form of the electric field as a function of position. The trajectory
equations must be integrated fobetweent = 0 andt = |/v;.

The results of the previous section can be used to find the
derivative of the interaction energy, with respect tde. First
we consider the case whelk, is neglected. If the interaction
energy can be described by first order perturbation theory (linear
Stark effect) then eq 5 gives

dw_ MK
dE "0+

= [¢osol (20)

Second order perturbation theory gives a contribution to the
derivative from by eq 6 that is linear i@ or Q:

aw? _ [P KIP =M
€~ F1-1)@1+1)
[(3+ 1) — KA[(I + 1> — M}

- (21)
3+ 1)%23 + 1)(23 + 3)

For the exact calculation &/ the derivative ofW with respect 0-00 : 1'0 : 2'0 : 3'0 20

to E can be evaluated with the help of the Hellmdreynman

theorem, but the trajectory calculations use the derivatives for E (kV/cm)

many E, so it is easier to first accurately approximate the Figure 1. Effective force constants for exact and second order Stark
dependence aiV on E with a series of Chebyshev polynomi&ls effects (eqs 20 and 21 in text) for th&l1) |2110) |212]) and |222]
and then differentiate this series term by term to produce anotherstates of CH. The solid lines indicate the exact interaction, and the
Chebyshev seriéafor dW/dE. In this work it has been found dashed lines indicate the interaction to second order.

that only ten terms in the Chebyshev series for the derivative
are necessary to accurately compWédE for the exact Stark
effect for the lowest energy states of €Hwith electric fields
from 0 to 40 kV/cm. The first term givesWWdE for the linear
Stark effect, and the first two terms yield the quadratic Star
effect. The coefficients of the polynomials are evaluated from
the values oW at 50 values oE.

The Chebyshev expansion technique also works well for the
interaction energy for CH when Hgq is included. However 3.1. Forces in Ideal Hexapole Fields Since there is a simple
for this case two Chebyshev series are used to accuratelylinear restoring force for a molecule with a linear Stark effect
approximateWV. The coefficients of one series are found with in an ideal hexapole field, we will now compare the actual force
50 values oE from 0 to 1.5 kV/cm and the other with 50 values that a molecule will experience (exact calculation of the
of E from 1 to 40 kV/cm. Twenty terms are used for each interaction energy) with the force for the linear Stark effect.

range of validity for the linear Stark effect and to see how
deviations from the linear Stark effect will affect focusing. We
will see that both strong fields and inclusion of hyperfine
K coupling make significant changes in the forces that molecules
experience in hexapoles.

3. Results

series, andW/dE is evaluated with the first series fer< 1.25 Figures 1 and 2 give this comparison for the case in whkigh

kV/cm and the second for greater fields. is neglected in Ckll. These figures use recent literature values
For the ideal hexapole field, the electric field is axially for B and x5 for the quadratic Stark effect and the exact

symmetric and has the magnitude calculations. Thirty (30) basis functions (differehtare used.

Figure 1 gives results for th&é110]|2110] 1212 and|222 ktates,
_ 3Up(r\2 and Figure 2 gives results for th@l1[] 312|313 and|323]
E(r) = _(r 0) (22) states. The notation used here actually gives the absolute value
for each quantum numbekK @ndM ), but the understanding is
where Up is the half of the voltage difference between two that the producMK is negative so th¢l11lstate could bel
hexapole rods. We see that the maximum electric field occurs — 1 10or [1 1 — 1] If the linear Stark effect were valid for all

for r = ro and has the magnitudeUgr,. For the field E, then eq 20 shows that each state would have the exact
represented by eq 22, the partial derivatives with respegt to interaction (solid line) as a horizontal line with (dW/dE)
andy are easily given as = —MK/[JJ + 1)]. However, all of the states with the
exception of thé312 state show significant deviation from the
9E 6U, linear Stark effect expectation.
X ﬁx The figures also show the expected results (dashed straight
0 lines) when the quadratic Stark contribution (eq 21) is included
6U with the linear Stark effect. The figures show that there are
9E _ _Oy (23) significant deviations from the quadratic Stark effect Eoof
ay ro3 about 5 kV/cm for the|1110and |2110states, but that the

guadratic Stark effect provides a good approximation for states
If Wis accurately given by the linear Stark effect, and if the with J = 3. As expected the exact and second order Stark
productMK is negative, then both theandy motions will be interactions show the same deviation (increasing or decreasing)
harmonic. This observation has been the basis of experimentalwith increasinge. We will see the consequences of positive
methods for focusing symmetric top molecules in hexapole fields or negative deviations when we present the results of trajectory
for more than 30 years. We can now proceed to examine thecalculations.
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Figure 2. Effective force constants for exact and second order Stark
effects for the311]|312] |313) and|323Istates of CH. Solid and
dashed lines are as in Figure 1.
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Figure 3. Exact Stark interaction energies for gHincluding the
nuclear quadrupoteelectric field gradient interaction for the | nucleus.
This diagram is drawn for the lowest energy states (nominafy),

and theF values are indicated. The states that can be focused in

hexapole electric fields are indicated by solid lines. The states that

cannot be focused are indicated by dashed lines.
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Figure 4. Effective force constants for the states in Figure 3 that can
be focused.

gives the expected 18 states for the lowest®/,, F = 5/, and

F = 7/, states. The energies of the states are referred to the
zero field mean of the state energies and agree very well with
other resultd> The main differences with this work and the
earlier work® is that they used the uncoupled representation
and also included nuclear spin effects for all nuclei. Inclusion
of the other nuclei changes the set IBfand Mg quantum
numbers and also gives rise to a number of near or real crossings
that have energy splittings that are too small to effect the
parentage of a Ciil state as it travels through a hexapole.

Figure 3 uses solid lines to indicate the states that correlate
with the focusable statgl11for the case in which nuclear
guadrupole-electric field gradient interactions are neglected.
There are six, (B+ 1), such states witMg values that range
from —3/,to +7/» in unit increments. Th&lg = 7/, state arises
from theF = 7/, states, while the others arise from the= %/,
states. The two states withlg| = 7/> show linear Stark effects,
and this is simply due to the fact that they do not couple with
any of the othel = 1 states. The other five focusable states
with Mg having values from—3/, to +5/, definitely show
significant deviations from the linear Stark effect at the relatively
small electric fields shown in this figure.

Figure 4 shows the effect dig on the force that a Ckll
molecule experiences in a hexapole field. Not surprisingly the
Mg = 7/, state focuses very much like tiM; =1 state would
focus without nuclear quadrupole coupling, but it is interesting
to note that the linear Stark effect force is actually about 1%
larger than it would be without the nuclear quadrupole coupling.
This is becausklg couples together differedteven in the zero
field limit, and the electric field matrix elements add with
definite phases to these zero field matrix elements. The other

The force that a molecule experiences when the nuclear Mg show less and less focusing for smallas Mg decreases.

quadrupole-electric field gradient interaction is included can
also be calculated. Here we use the nuclear quadretéetric
field gradient parameter (eq©& —1934.0995 MHz) used by
Bulthuis et al!® and 50 basis functions (differedtand F ).

Figure 3 shows the interaction energy for the lowest states of

CHsl with K = —1 andMg having values ranging from 7/, to
+7/, (note the that the same curves apply Kor= 1 when one
switches the sign of th#g labels!). This set oMg values

We note thaMg = —%, andMg = —%/, show defocusing for
small applied electric fields. We will see that this low-field
behavior of the forces whelq is included makes significant
differences in the transmission of a hexapole.

3.2. Trajectory Results. This section presents the results
of trajectory calculations for different states of €H with
neglect or inclusion oHg. The hexapole is assumed to have
an ideal hexapole electric field: lengths= 200 cm, and radius,
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Figure 5. Transmission of an ideal hexapole electric field for {th&ll] Figure 6. Transmission of an ideal hexapole electric field for (B&1L])

|2110) and |21Z]states of CH neglecting the nuclear quadrupole 312 and |313]states of CH neglecting the nuclear quadrupole
interaction. The solid lines represent the focusing due to the exact interaction. The solid lines represent the focusing due to the exact
interaction. The dotted and dashed lines represent the focusing for theinteraction. The dotted and dashed lines represent the focusing for the
Stark effect calculated to first and to second order, respectively. Stark effect calculated to first and to second order, respectively.

ro = 0.7 cm. At the highest rod voltagélo, the maximum  sg the intensity enhancement is 150 000. Similar enhancements
electric field is 34.3 kv/cm. The initial positions, andyo, for a different hexapole geometry have been obtained by Harren
are randomly chosen within a circle with radies0.005 cm, et al13

and the velocity,vy, is chosen from a Gaussian velocity — The|1110and|212states show similar differences between
distribution centered at 300 m/s with a velocity width corre- the focusing for the exact and linear Stark effects. Both of these
sponding to a translational temperature of 2 K. The velocities, states show two peaks in the focusing curves overdhisinge.

vxo and vy, are given random values betweei®.06 v, and The lower voltage focus corresponds to a “half-wavelength”
+0.06v,. A molecule is transmitted through the hexapole if it focus criterion, where the molecule does not cross the axis of
never has a radial displacement in the hexapole greaterghan the hexapole as it travels through. The highds focus

and it leaves the hexapole wix? + y;2 <0.005 cm. Equations  corresponds to to a “one wavelength” focus criterion, where
19 are integrated with a fourth order Rung€utta routing? focused trajectories cross the axis of the hexapote=atl/2.

for all orders of the Stark effect. Good accuracy results with Generally the one wavelength foci have larger intensity than
24 integration steps over the length of the hexapole. Runge the half-wavelength foci, because the former correspond to larger
Kutta integration is not necessary for the simple harmonic angular divergence of the incident beam (larger transverse
motion that characterizes the linear Stark effect, but it is Velocities). In some cases there are trajectories #jtbr more
convenient to use the same integration routine for all cases. ‘wavelengths”. However, beam stops are often placed at

Figure 5 shows trajectory results for the11) [2117 and various positions interior or exterior to hexapoles to help prevent
1212 states of CH if Hq is neglected. Figure 6 shows the unwanted transmission of molecules that are not focused. If a

trajectory results for the3117) [3120) and [313states. Each beam stop were locatedat 1/2, it would stop the transmission

. . . - . of one wavelength focused molecules.
focusing curve is calculated with 100 000 trajectories calculated The linear Stark effect is more strongly focusing than the

at each of 800 values fo _separated by 0.01 k\./' The focusing exact Stark effect for both th&110and|212states, and there
curves are presented with enough smoothmg to aIIow_ easyis very little difference for the focus at loW,. The stronger
differentiation. The results show that the maximum transmission focusing and the lack of differences for the Idw-focus is
(one wavelength focus) for this hexapole implementation would nsistent with the data in Figure 1. Ftlp = 2 kV the

be about 2% if the first order Stark effect were valid. The mayimum electric field is 8.6 kV/cm, and Figure 1 shows that
transmission is defined as the number of molecules that passihe Jinear and exact forces differ for this electric field by about
through the exit aperture divided by the number that satisfy the 1004. The|211Cstate has stronger focusing with the exact Stark
initial conditions for position and velocity. In each plot the effect, and this is again consistent with Figure 1. Figure 1 also
exact focusing curve is the solid line, the linear Stark effect indicates that the force for giveithat acts on 211 molecule
focusing is shown with a dotted line, and the quadratic Stark s |ess than that operating orjEL10or |212molecule. Hence
effect focusing is shown with a dashed line. Itis interesting to the half-wavelength focus fg211occurs at highet)y values.
note that the focused molecules have a very large increase in Figure 5 also shows that the one wavelength focus is quite
their intensity over that expected from the solid angle subtendeddifferent for the linear and the exact Stark effects. The peak
by the exit aperture of the hexapole. If focusing were not transmission for the exact interaction is much lower than that
present, we would expect a transmission of only 1x380-5%, for the linear Stark effect. Also the exact transmission peak
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Figure 7. Transmission of the lowest energy states of;drlan ideal
hexapole electric field including the nuclear quadrupole interaction.
The bottom panel shows the transmission for eblghstate, and the
essentially uncouplellls = 7/, state is indicated with a dotted line. All

of the otherMe states are indicated with solid lines. The M %, state

is responsible for the small peak at 3.4 kV/cm. The top panel compares
the Mg = 7/, transmission (dotted line) with the average of\H states
(solid line). The dashed line in the upper panel shows 10 times the
percentage of the total transmitted beam that is in the=M/, state.

has a large width and a long tail toward higt&y. The width

of the transmission peaks for the linear Stark effect is due to
the velocity spread of the molecular beam (chromatic aberra-
tion), but the additional broadening for the exact treatment is
due to the angular spread of the molecular beam (spherical
aberration). Molecules with large transverse velocities sample
the high-field parts of the hexapole where the forces are
definitely not harmonic. The amount of tailing at the high-
values will be significantly determined by the exact collimation
that is used in a particular experiment.

Figure 6 shows many of the same trends as Figure 5.
However, thg3110and|312Istates are interesting. Th&11™
state has its half-wavelength focus at high fields, and this state
is more strongly focused in the exact Stark effect than in the
linear approximation. Now the exact peak is significantly
broadened, but it maintains good symmetry. TB&ZXIstate
shows very little difference between the exact and linear Stark
effect forces in Figure 2. This is very evident in the near
superposition of the focusing curves in Figure 6.

Anderson

interactions. TheMg = 7/, state focuses differently from the
other fiveME states. This focusing difference is not surprising
considering the results presented in Figure 4. The= 7/,
state behaves as if there were no hyperfine interaction. The
lower panel in Figure 7 shows that there is a significant shift to
higherUg in the transmission peaks for the states with =

I,. There is also significant tailing of the transmission to the
high-Uy side of the half-wavelength peak, and thle = 5/,
state is responsible for the small maximumiUat= 3.4 kV.

The top panel of Figure 7 compares thig = 7/, focusing
curve with the average of the curves for all six focusaidie
states. FolJy on the rising edge of the focusing peaks the
transmission will favor theMg = 7/, state. This gives the
possibility of producing a partially nuclear spin polarized
molecular beam of Chl. The dashed line gives the percentage
of spin polarized Chl, and useful transmitted beam intensity
can be obtained with more than 40% in thle = 7/, state.

3.3. Cylindrical Rod Approximation for Hexapole Fields.

The trajectory results of the last section used an ideal hexapole
electric field. However, most experiments use hexapoles
constructed with cylindrical rods of diameter equal to half of
the radius o of the hexapole or with rod radiugy = 0.5r.

This choice for the rod radius makes the curvature of the ideal
hexapole electric field equal to the curvature of the rods.at

We can now investigate the implications of this approximation
for hexapole fields.

First we must find the electric field distribution for the
cylindrical rod configuration. The straightforward approach to
this task is to first solve the Laplace equation:

2 2
IV IV (24)
»e oy
whereV is the potential at the poink(y). Then the electric
field componentsk, andEy, can be calculated as followd,
= dV/ox andEy, = 9V/dy. The Laplace equation can be solved
with an expansion in Bessel functions, but it is easier to seek a
finite difference solution. Here a grid with 801 points on a
side was used to find the potential distribution. This corresponds
to a maximum radius within the square box of 400 points.
Initially the potential is specified by setting the potential to 0
for all points with radius greater than or equal to 400 and the
points corresponding to the cylindrical rod positions alternately
to the potential-1 or —1. Additionally the potential at the
origin is set tovV = 0. The centers of the rods (of radies80
grid units) are found on a circle of radigs 240 grid units.
This leaves the radiusg, of the hexapole to be 160 grid units.
The resulting potential is for a hexapole field with a grounded
surface at 2.5, but previous work®Zindicates that the potential
within a hexapole or quadrupole is not significantly affected
by the location of the grounded surface. The finite difference

Figures 5 and 6 also show that there are differences betweerequations are solved by the simultaneous over relaxation (SOR)

focusing calculated with the exact Stark effect and that
calculated including terms to second order in the Stark effect.
The differences are particularly marked for {h&17]|211 states
and the|3110state. The peak position, width, shape, and
magnitude may differ. However, there is little difference
between the exact and quadratic Stark trajectories foy2h# 1

techniqué? to give the potential at each grid point.

The electric field components are determined with the
symmetric finite difference approximation for partial derivatives
(care must be taken to avoid points of fixed potential), and the
electric field magnitude is found & = [E# + EAY2 The
magnitude of the electric field is plotted as a contour plot in

state, although there is a large difference between the first orderFigure 8. The plot shows that the magnitude of the electric

and exact calculations for the one wavelength trajectories. This
is consistent with the data in Figure 1 for this state.

field shows good axial symmetry fofrg less than 0.5, but that
significant deviations appear for larger,. In particular the

Focusing curves can also be determined including the effectsflattening of the contours indicate that there will be significant

of Hg, and such results are shown in Figure 7. The lower panel
indicates the differences in the focusing curves for the different
ME states that correspond to thEL 1lstate without hyperfine

tangential forces acting on a molecule with a linear Stark effect.
This finite difference approximation for the magnitude of the
electric field was used early in this work for trajectory
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calculations, but the trajectory calculations presented below use
a function ofr and@ that is fitted to the finite difference results. U, (kV)

This function is the following: Figure 9. Transmission of th¢1110] [2127] and |313states of CH
for exact Stark interaction with neglect of nuclear quadrupole coupling

Uo/r\2 r\e in ideal hexapole fields (solid lines) and in two cylindrical rod
E(r, 0) = r—(r—) [2.9498398— 0.112290(.',—) cos(@) — approximations:po = 0.5 ro (dotted lines) angb, = 0.565, (dashed
o\'o 0 lines).

r\i2
0'037623€F) 005(13)] (25) yield oriented molecules narrow symmetric peaks are more
0 important than slightly larger, but broader and less symmetric,

eaks.
Equation 25 provides a good fit to the electric field distribution P

with a fractional error of only 0.1% of the maximum field 4 pjscussion

values. If only the first term is used, the fractional error is 0.7%, ) . )
and using two terms has an error of 0.2%. Other autféts The preceding results show that serious errors may occur if
have fitted the radial and angular dependence of the potentialonly the first order Stark effect is considered for trajectories in
for multipole fields with expressions similar to eq 25, but for hexapole fields. Errors may also occur if the Stark effect is
this work fits to the electric field magnitude were done because c@lculated only to second order. Itis important to evaluate the
the field is everywhere positive and more slowly varying than electric field—dipole interaction to high orde( and to con5|der
the potential. For the actual calculations of trajectories eq 25 the effects of nuclear quadrupole momeaetectric field gradient

is written in terms of the Cartesian equivalentsfadndr. For couplings for molecules with heavy nuclei. The use of

exampler3 cos(¥) = x® — 3yx. cylindrical rods for hexapole construction can also give quite
Vonbur?* has derived equations to treat the electric field different focusing curves than ideal hexapoles.

distribution for Z-pole devices that use cylindrical rods. In this discussion we will first consider the application of

However, his electric fields differ significantly from the fields ~Some of the results of this paper to the experimental hexapole
calculated here. There is a cautionary remark in his paper thatarrangement of Ohoyamet al.** To do this, a computer

says that the equations will only be good for rod ragii, that program in Fortran has been written that calculates focusing
are small with respect t,. Apparently rod radii that are half ~ Curves with user specification of the order for the Stark effect
of 1o are too large for his equations to be accurate. and with user specification of experimental conditions. The

Figure 9 shows focusing curves for tHd.15|2120) and|313] program allows the user to specify a point source at a distance
states of CHI, neglectingHg for ideal and cylindrical rod ~ Z = 0 which may be either on axis or at an off-axis position

hexapoles. The ideal hexapole focusing curves are shown adXoYo ). The user can also specify theaxis position and
solid lines, and the calculations fps = 0.50 andpo = 0.565¢ dimensions of on-axis collimation apertures (circular or rec-

are shown as dotted and dashed lines, respectively. Thetangular) before and/or after the hexapole. 'Elm?sition of
focusing curves show that cylindrical rod hexapoles have the the start and end of the hexapole as well asritsan be
interesting feature that the peaks are more symmetrical thanSPecified. Finally the program allows specification of up to
they would be in ideal hexapoles. However, the overall threéeé beam stopsz(position, and circular or rectangular
transmission for a hexapole constructed with cylindrical rods dimensions). One beam stop can be specified before the start
with po = 0.5 is significantly smaller than that for an ideal Of the hexapole, another within the hexapole, and the third
hexapole. The focusing curves for a hexapole constructed with Petween the end of the hexapole and the detector or interaction
cylindrical rods withpy = 0.565 have less difference from ~ région. The program allows specification of velocity distribu-
those for the ideal hexapole. It is interesting to note that the tONS of the form

peaks occur at the same position for all of these hexapoles. This 2
figure shows thapo = 0.5r¢ cylindrical rod hexapoles are likely fo) = " ex;{_m(v ~ o) ) (26)
to be preferred, because generally in state selective studies to 2KT
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ST T T T T — T for the|211ktate. For this experimental arrangement the largest
20F 312> 7 differences between the exact and second order calculations is
]g b E seen for a state where the interaction is increased when higher
5F ] order Stark effects are included. The linear and exact Stark
s T T T T T T T T T . effects for|312give the same focusing curve, which can be
20 F 1211> . . easily explained by the results given in Figure 2. Figure 10
15 1 3 shows that it is important to use exact or high-order estimates
12 E E for Wfor this experimental arrangement. Significant errors are
o5 T T o — ; introduced ifW is calculated only to first order.
20 F 1313> The difference between focusing curves that are calculated

with the linear and exact Stark effects will depend on the
experimental collimator positions and dimensions and on the
position of the beam stops. If no beam stops are used with
small collimators, there should be little difference between the
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linear and exact Stark trajectories because the molecules will
10 always travel near the hexapole axis where the electric fields
5 are small. If larger collimators are used without beam stops,
25 T results similar to those in Figures 5 and 6 should be obtained.
?g F The half-wavelength peaks at small valuedigfshould have
10 E less difference between the exact and linear Stark trajectories,
5r and the peaks at largddy should show larger differences
00 5 6 7 8 between the linear and exact Stark trajectories. If a beam stop

is inserted near the middle of the hexapole, it will tend to block
U, (kV) one wavelength trajectories and the half-wavelength trajectories
Figure 10. Transmission of a hexapole focusing arrangement foy CH that are transmitted will tend be less influenced by the difference
| with the experimental dimensions of ref 12. The dotted and dashed petween the linear and exact Stark forces.

lines assume focusing calculated with the Stark effect calculated to . . N
first and to second order, respectively. The solid lines show the focusing . We have seen the hyperfine interactions can also significantly

for the exact Stark effect. Hyperfine interactions and the effects of the Influence the trajectories of molecules in hexapole fields. Such
cylindrical rod approximation to the hexapole field are neglected. interactions decrease the restoring force in small electric fields,
so that there is less focusing whenever the molecules are near

wheren, m, vo, andT can be specified. Copies of this program  the hexapole axis. This observation is true for most ofithe
can be obtained via e-mail from the author. states. However, the state with the largest value for a given

Figure 10 shows the focusing curves for several states of CH J focuses as if hyperfine int_eractions were not present. This
using the hexapole, collimation, and molecule speed parameterd!lows the production of partially nuclear spin polarized beams,
of Ohoyamaet al12 For these experiments one beam stop is and it also explains why there is always some orientation that

placed before the hexapole, and this beam stop blocks some ofS preserved even with low guiding _electric fields (see ref 15).
the “half-wavelength” trajectories. Figure 10 shows focusing However, we expect that the position of beam stops and the
curves calculated with the exact Stark effect and with the Stark Siz€ of collimating apertures will affect the importance of
effect calculated to first and to second order. The transmission NYPerfine interactions on trajectories. If the collimation keeps
for these experimental simulations is defined as the number of all of the molecules near th_e hexapole axis, there S_hOUId be a
molecules that pass through the detector aperture divided by!ar9€ €ffect of the hyperfine interactions on the focusing curves,
the number of molecules that would pass through the initial P&cause most of the molecular movement will be in regions of
collimating aperature if the beam stop were not present. These!OW applied electric field. However, if a beam stop is placed
curves can be compared with the calculations for second orderPefore the hexapole so '_[hat_ it block_s half-wavelength trajectories,
and linear Stark effects in ref 12 (Figure 4). We expect that the effects of the hyperfine interaction should be smaller because

the present results for the linear and quadratic Stark effect shouldMOSt Of the trajectories will be in regions with larger electric

agree with those of Ohoyan® al. However, the linear Stark fields.

focusing peaks of Ohoyan®t al. are only 70% of the size for The experimental simulations in Figure 10 ignore the effects
those in the present work. The reason for this discrepancy is Of hyperfine interactions, and such interactions would clearly
that the angular distribution of molecules entering the hexapole have importance for molecules such assCldspecially in the

is incorrectly estimated by Ohoyama. Ohoyaetal. perform |1110state where the rotational spacing is smallest.

the angular integration without the sihsolid angle factor that The final comments in this discussion concern the construc-
accounts for the fact that there are more molecules entering withtion of hexapoles with cylindrical rods. We have already seen
off-axis angles betweeé and 6 + do for larger6. With the that there are significant differences between exact Stark

Ohoyameet al. experimental arrangement the inclusion of the trajectories in ideal hexapoles and in cylindrical rod hexapoles
correct angular averaging makes a large effect because molwhere the radius of the rodgy, is half of the radius of the
ecules can only be transmitted through the hexapole if they havehexapolero. The trajectories differ primarily because of the
large enough angles to go around the beam stop. This averagindarge coefficient of ther(ro)® cos(&) term in eq 25. This choice
problem makes it difficult to compare the present linear, for the value ofogis the most commonly used, but other values
quadratic, and exact Stark effect calculations with the linear have been used. Kramer and Bernsteisedpo = 0.66%,

and quadratic results of Ohoyargal. However, we can make  and Everdijet all® suggest usingo = 0.56028,. The latter
some remarks about the present results in Figure 10. There isvalue was obtained from an analysis like the one done earlier
very little difference between the quadratic and exact focusing by Denisoi® for quadrupole electric fields. Denison observed
curves for thg212] |313) and|312Istates. Some difference  that the magnitude of the/(o)* cos(4)) term in the quadrupole
can be seen for thd 110state, and the most difference is seen electric field (expansion analogous to eq 25) depended on the
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Figure 11. Coefficients in the expansion of the electric field magnitude
for different cylindrical rod approximations for a hexapole field. The
coefficientsay, a1, anda, are defined by eq 27. The lines drawn through
the points forag anda; are defined by eqs 29 and 28, respectively.

ratio of po to ro. In fact the coefficient of this term vanished
for some value of the ratio. Everdgt all® used the same
argument for hexapole fields to deduce the ratio for which the
(r/ro)® cos(®) will vanish.

Figure 11 presents the results of fits to the electric field for
cylindrical rod hexapoles witag to ro ratios between 0.46 and
0.65. The electric fields are fitted to the following equation:

UO r\2 r\eé r\12
E(r,0) Z_(E)) [ao +a (E)) cos(&) + az(a) cos(1%)

Mo
(27)

Itis easily seen that the term will vanish forpg/ro near 0.565.
Figure 11 also shows a line for a fit to the values &rfor
different values of the radius ratio. This fit is given by the
following equation:

a, = (@+ b(pgro))((pd/To) — ©)

The fit of this equation to they data yieldsa = 2.61+ 0.10,
b= —-1.78+ 0.18, andc = 0.5650+ 0.0005. It appears that
po should be 0.56%, for the best approximation of a hexapole
field with a cylindrical rod hexapole. This is close to the value
given by Everdijet al*®

Figure 11 also gives the dependence ofaherm on theog
to ro ratio.

(28)

ay = (a+ b(py/re) + clpyro)?) (29)
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wherea = 2.500+ 0.027,b = 1.171+ 0.096, anct = —0.546
+ 0.087. Itis interesting to note that tlag term is equal to 3
for polro slightly greater than 0.6.

Finally values fora, are presented in Figure 11. Here
although the values are precisely determined for given ratios
of po to ro, the values foila, show some scatter from a simple
curve. However, the plotted values should suffice for determin-
ing the appropriate values for this parameter that will represent
the electric field magnitude for a given hexapole construction.
The scatter in the values fap may originate in the fact that a
given grid for the finite difference calculation will not allow
very precise definition of the cylindrical rod boundaries.

Figure 9 shows that hexapoles wigy = 0.565, have
focusing curves that more closely approximate focusing curves
for ideal hexapoles than hexapoles wiih= 0.5r.
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