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The trajectories of symmetric top molecules are computed in hexapole electric fields. The transmission of a
hexapole for linear Stark effect focusing is compared with that due to the exact interaction of the electric
field with the symmetric top molecule. The use of the exact interaction in place of the linear Stark effect
produces significant changes in the position and shape of the transmission peaks. Focusing curves are also
calculated assuming the Stark effect calculated to second order. The nuclear quadrupole-electric field gradient
interaction is found to significantly affect the focusing of CH3I, and it is possible to produce a beam of
rotational state selected and partially spin polarized CH3I. The focusing for the usual experimental hexapole
composed of cylindrical rods is compared with the focusing for an ideal hexapole, and a finite difference
technique is used to determine the cylindrical rod radius that will provide the best approximation to an ideal
hexapole field. This best rod radius is 0.565 of the hexapole radius, and focusing curves are shown for this
choice of rod radius. A computer program to calculate trajectories for experimental hexapole arrangements
with exact Stark interactions is available.

1. Introduction

It has been known, for more than 40 years,1 that symmetric
top molecules can be focused by means of the first order Stark
effect in hexapole electric fields, and the first experimental
confirmations of the technique occurred more than 30 years ago.2

There have been many applications of this hexapole focusing
technique in the intervening years, and the same physics that
allows focusing of specific|JKM〉 states also allows the
specification of the orientation of the dipole moment (symmetry
axis) of the symmetric top molecules. This observation has
allowed exploration of steric effects in bimolecular gas phase
reactions (for reviews see refs 3-7) and direct determination
of orientation by photodissociation8,9and electron diffraction.10,11

However, linear Stark focusing is an approximation that is
valid only for hexapole electric fields that are not too large, for
molecules without large hyperfine interactions, and for ideal
hexapole fields. Inclusion of these complicating effects is likely
to alter the position, shape, and size of the peaks in the focusing
curves. In this paper we investigate the effects of higher order
terms in the Stark effect, hyperfine interactions, and nonideal
hexapoles. This work is the first systematic investigation of
these focusing complications, although several other authors
have addressed aspects of the problem. The focusing effects
of the second order Stark effect has been studied recently,12

and empirical attempts have been made to account for higher
order Stark effects.13,14 Bulthuis et al.15,16 have explored the
effect of hyperfine interactions on the degree of orientation that
can be achieved with a molecule such as CH3I, but they do not
investigate the effects of hyperfine interactions on focusing.
Several papers have proposed or used different methods to
experimentally approximate hexapole fields, but none have
presented trajectories for symmetric top molecules in the
approximate hexapole fields. The UCLA hexapole experiments
use specially machined electrodes that closely approximate the
ideal hexapole equipotentials17,18 but most of the hexapole
experiments use cylindrical rod approximations to hexapole

fields where the radius of the rods,F0, is half of the hexapole
radius,r0 (half of the distance between the inside surfaces of
the diametrically opposed rods). This choice for the rod radius
will make the radii of curvature of the electric potential and
the electrodes equal at the distancer0.5 Other workers have
usedF0 to r0 ratios of 0.6672 and 0.560.19

This paper will first explore the effects of higher order terms
in the Stark effect. These will be done in two ways: effects
on the force that the symmetric top molecules experience and
consequences of the changes in the force for the trajectories.
We will then show the effects of hyperfine interactions on forces
and trajectories. Finally we will investigate trajectories in
cylindrical rod approximations for hexapole electric fields.

2. Theoretical Preliminaries

2.1. Interaction Energy. Here we consider the interaction
energy of polar symmetric top molecules in electric fields. We
will look at this problem with several degrees of approximation
or complexity. The Hamiltonian,H, for a symmetric top
molecule in an electric field can be written as the sum of three
terms:

The first term in eq 1 is the Hamiltonian for the field free
symmetric top neglecting hyperfine interactions, and the second
term describes the energy due to nuclear hyperfine interactions.
This term is dominated by nuclear quadrupole moment-electric
field gradient interactions. The third term describes the interac-
tion of an applied electric field with the dipole momentµ of
the molecule.
The interaction energy,W, of the molecule with an applied

electric field is defined as

whereεE is the energy of a state with an applied electric field,
E, andε0 is the energy with no applied electric field. The energy
of the molecule in an electric field can be estimated with first
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H ) H0 + HQ - µ‚E (1)

W) εE - ε0 (2)
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order perturbation theory for weak fields, with second order
perturbation theory for somewhat stronger electric fields, and
with basis set expansions (exact treatment) for strong electric
fields. In this paper we only consider electric fields that couple
rotational states of the symmetric top, and we do not consider
very strong electric fields (above 100 kV/cm) that may mix
electronic states.
The actual calculation of the interaction energy depends on

whether the hyperfine interaction term,HQ, is neglected or not.
If the hyperfine term is neglected, then the eigenfunctions of
H0 are described by the quantum numbersJ, K, andM, which
are the total angular momentum of the symmetric top, the
projection of the total angular momentum on the unique
principal axis of the top, and the projection of the total angular
momentum on the space fixedZ axis. The rotational eigen-
functions of a symmetric top are given as rotation matrices:20

The rotational energy levels (diagonal elements) forH0 areε0
) hcBJ(J + 1) + hc(A - B)K2, and the energy for increasing
K increases if the symmetric top is prolate (A> B) and decreases
if the top is oblate (A < B). The rotational constantsA andB
are expressed in units of cm-1.
The electric dipole-electric field interaction is easily written

as -µE cos θ ) -µEP1(cos θ), whereP1 is the Legendre
polynomial of order 1. We will see with this observation that
calculations will need evaluations of the matrix elements:

where Wigner 3j symbols are used.20 These equations show
that an obvious requirement for nonzero matrix elements is that
M ) M′ andK ) K′.
The energy of the symmetric top in an applied field can be

evaluated in different approximations. For first order perturba-
tion calculations the interaction energy is given as the diagonal
elements for each|JKM〉 state:

after explicit evaluation of the 3j symbols. This shows that
linear molecules without excited bending vibrations and diatomic
molecules without unpaired electrons do not exhibit linear Stark
effects, because in these casesK ) 0. For molecules with a
nonzero productMK the interaction energy may either increase
or decrease with increasingE, depending on whether the sign
of the product is negative or positive.
The contribution to the interaction energy from second order

perturbation theory is evaluated as21

whereΩ) (µE)/(hcB) is the commonly used ratio of the dipole-
electric field interaction to the “rotational” energyhcB. The

second order or quadratic Stark effect will be present for all
symmetric tops and linear molecules.
The interaction energy due to the coupling of many|JKM〉

states by the electric field is easily calculated by expanding the
wave function for the system in the electric field as

The energy eigenvalues and the eigenvectors ofH are then found
by diagonalizing the matrix ofH in the |JKM〉 basis. Examina-
tion of eq 4 shows that this matrix will be tridiagonal because
for L ) 1 the angular momenta|J - J′| must be less than or
equal to 1. For our purposes the eigenvectors are not necessary
because there are no avoided crossings in the spectrum ofH as
a function ofE. However, the eigenvectors are important in
other similar applications such as “brute force” orientation of
molecules.7 Here eigenvectors are important for fully quantify-
ing the prepared Legendre moment (〈Pn(cosθ)〉).
The nuclear hyperfine coupling term should not be neglected

for symmetric tops that contain heavy atoms with nuclear
quadrupole moments such as iodine. Quadrupole moments are
possible whenever the nuclear spin, I> 1/2, and in this case the
calculation of the electric field interaction energy is somewhat
more involved. It is convenient to work in the coupled basis
where the rotational angular momentumJ of the symmetric top
is summed with the nuclear spin angular momentumI of the
atom to produce a total angular momentumF. The magnitude,
F, takes all integral or half-integral values from|J - I| to |J +
I| in unit steps. The eigenstates ofH with nuclear coupling
are characterized by the good quantum numbersF and a
projectionMF. The projectionMF ) MJ + MI, whereMJ is the
projection ofJ andMI is the projection ofI . (In the discussion
above about the case without nuclear hyperfine interactions,M
was used to denoteMJ.) We see that the hyperfine coupling
scramblesJ and its space fixed projectionMJ. Since the nuclear
hyperfine coupling does not mix values ofK, the basis functions
in the hyperfine case become|{JI}KFMF〉, where the notation
indicates thatJ and I couple to together to formF.
For molecules without unpaired electrons the most important

part ofHQ is the interaction of the nuclear quadrupole moment
with the electric field gradient at the quadrupolar nucleus, and
we neglect the much smaller nuclear spin-rotational coupling.
The explicit form for the term in the Hamiltonian is15

whereQ(2) is the quadrupole tensor of the nucleus andV(2) is
the electric field gradient tensor at the nucleus.
The matrix elements ofHQ in the coupled basis are obtained

with the aid of the following equation (after 5.7120):

where a Wigner 6j symbol is used, and it is explicitly stated
that only states with the sameF andMF are coupled byHQ.
The last two angular bracketed quantities are reduced matrix
elements.
The reduced matrix elements of-µ‚E in the coupled basis

are obtained with the aid of the following equation (after
5.7220):

|KM〉 ) ∑
J)max(|K|,|M|)

Jmax

cJ|JKM〉 (7)

HQ ) V(2)‚Q(2) (8)

〈{J′I}KFMF|V(2)‚Q(2)|{JI}KFMF〉 )

(-1)J+I+F{J′ I F
I J 2}〈J′K||V2||JK〉〈I||Q2||I〉 (9)

|JKM〉 ) [2J+ 1

8π2 ]1/2DMK
J* (φ,θ,ø) (3)

〈J′K′M′| PL|JKM〉 )

(-1)M′-K[(2J+ 1)(2J′ + 1)]1/2( J L J′
-M 0 M′ )( J L J′

-K 0 K′ )
(4)

W(1) )-µE〈JKM|P1|JKM〉 ) -µE MK
J(J+ 1)

(5)

W(2) ) 1
2
µEΩ[[J2 - K2][J2 - M2]

J3(2J- 1)(2J+ 1)
-

[(J+ 1)2 - K2][(J+ 1)2 - M2]

(J+ 1)3(2J+ 1)(2J+ 3) ] (6)
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where it is seen thatµ‚E can couple states with differentJ and
F.
Equations 9 and 10 are easily evaluated once the reduced

matrix elements are known; however, obtaining the correct
reduced matrix elements is often the most troublesome aspect
of working with spherical tensors. Of course the key to
assignment of reduced matrix elements is the Wigner-Eckart
theorem. Here we write Zare’s eq 5.14 to specify this theorem:

The Wigner-Eckart theorem can now be used to evaluate the
necessary reduced matrix elements. The reduced matrix element
of V2 is the most perhaps the most difficult because the electric
field gradient at the nucleus is specified with a value,eq/2, along
the molecular axis that rotates with the molecule. The projection
of this field gradient must be found on the space fixedZZaxis.
With this in mind the reduced matrix element ofV2 is found
after several steps after first recognizing that the quantum
numberR in eq 11 must beK. Then

wherem′ ) min(J′,J). Now using the Wigner-Eckart theorem
and eq 4, it is easy to derive that

The reduced matrix element ofQ(2) is easier because the
nuclear quadrupole moment,Q/2, is already defined with respect
to the space fixedZZ axis. We have immediately from the
Wigner-Eckart theorem (withMI ) I ) that

The reduced matrix element ofQ(2) is often written simply as15

The last reduced matrix element that we need is

and then the matrix elements of-µ‚E can be evaluated with
the Wigner-Eckart theorem as

Matrix elements ofH are easily evaluated with the preceding
formulas. In addition to the diagonal and off-diagonal contribu-
tions ofHQ and-µ‚E, the〈{J′I}KF′MF|H0|{JI}KFMF〉 elements
have nonzero values only for the diagonal elements whereJ′ )

J and F′ ) F. These diagonal elements have the values,
hcBJ(J+1) + hc(A-B)K2. The above formulas have been
checked by expanding the 3j and 6j symbols in their algebraic
form and comparing them with the equations in Gordy and
Cook.21

We conclude this section with the observation that other
interactions of external fields with molecules can be handled
with the equations of this section. In particular the interaction
of the gradient of an applied electric field with the electric
quadrupole moment of a symmetric top molecule can be
evaluated with eq 4 for the case in which hyperfine interactions
are neglected. The spherical tensor formalism will allow
evaluation of matrix elements for this case when hyperfine
interactions are not neglected.
2.2. Trajectories. The main goal of this paper is to explore

the trajectories of symmetric top molecules in more or less
axially symmetric electric fields. We treat the motion in ideal
or approximate hexapole fields, because such trajectories are
necessary for modeling molecular beam experiments. The ideal
hexapole electric fields are axially symmetric, but experimental
implementations commonly use cylindrical rods with the
diameter of the rods equal to the radius,r0, of the hexapole
which is half of the distance between the inside surfaces of rods
on opposite sides of the hexapole. We will see that the electric
field of this approximate hexapole has significant deviations
from axial symmetry.
To allow convenient calculation with electric fields that

deviate from axial symmetry and to follow trajectories that do
not have simple radial motion, we use Cartesian coordinates,x
and y, to describe the motion in planes perpendicular to the
axis of the hexapole (z). We need to be able to follow the
classical trajectory of a molecule that enters the hexapole field
at the position (x0, y0) with velocitiesVx0, Vy0, andVz in order to
find the exit position (xl, yl) and exit velocitiesVxl, Vyl, andVz
after traversing lengthl of the hexapole. We assume thatVz is
constant, that molecules disappear (pumped away) when they
have a radius greater thanr0, and that there is no scattering by
background gas within the hexapole (high-vacuum operating
conditions). We also neglect the hexapole fringing electric
fields.
The classical trajectories are described by Newton’s equations

as

whereW is defined by eq 2 andm is the mass of the symmetric
top molecule. Now the interaction energy is a function ofE
and various molecular parameters and quantum numbers, so it
is useful to write the trajectory equations as

where the partial derivative is evaluated at (x, y) and the ordinary
derivative is evaluated atE(x, y). The forces that the molecule
experience depend on the functional form of the interaction
energy as a function of the electric field and on the functional

〈{J′I}KF′|| - µ(1)‚E||{JI}KF〉 )

(-1)J′+I+FµE[(2F′ + 1)(2F + 1)]1/2{J′ F′ I
F J 1}〈J′K||P1||JK〉

(10)

〈R′J′M′|Tqk|RJM〉 ) (-1)J′-M′( J′ k J
-M′ q M )〈R′J||Tk||RJ〉

(11)

〈J′Km′|V02|JKm′〉 ) eq
2

〈J′Km′|P2|JKm′〉 (12)

〈J′K||V2||JK〉 )
1
2
eq(-1)K+J′[(2J+ 1)(2J′ + 1)]1/2( J′ 2 J

-K 0 K ) (13)

〈I||Q2||I〉(I 2 I
-I 0 I )) Q

2
(14)

〈I||Q2||I〉 ) Q
2[(2I + 1)(I + 1)(2I + 3)

I(2I - 1) ]1/2 (15)

〈J′K||P1||JK〉 ) (-1)K+J′[(2J+ 1)(2J′ + 1)]1/2( J′ 1 J
-K 0 K )

(16)

〈{J′I}KF′MF| -µ‚E|{JI}KFMF〉 )

(-1)F′-MF( F′ 1 F
-MF 0 MF

)〈{J′I}KF′|| - µ(1)‚E||{JI}KF〉 (17)

d2x

dt2
) -1

m
∂W
∂x

d2y

dt2
) -1

m
∂W
∂y

(18)

d2x

dt2
) -1

m
dW
dE

∂E
∂x

d2y

dt2
) -1

m
dW
dE

∂E
∂y

(19)
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form of the electric field as a function of position. The trajectory
equations must be integrated fort betweent ) 0 andt ) l/Vz.
The results of the previous section can be used to find the

derivative of the interaction energy,W, with respect toE. First
we consider the case whereHQ is neglected. If the interaction
energy can be described by first order perturbation theory (linear
Stark effect) then eq 5 gives

Second order perturbation theory gives a contribution to the
derivative from by eq 6 that is linear inE or Ω:

For the exact calculation ofW the derivative ofWwith respect
to E can be evaluated with the help of the Hellman-Feynman
theorem, but the trajectory calculations use the derivatives for
many E, so it is easier to first accurately approximate the
dependence ofWonEwith a series of Chebyshev polynomials22

and then differentiate this series term by term to produce another
Chebyshev series22 for dW/dE. In this work it has been found
that only ten terms in the Chebyshev series for the derivative
are necessary to accurately compute dW/dE for the exact Stark
effect for the lowest energy states of CH3 I with electric fields
from 0 to 40 kV/cm. The first term gives dW/dE for the linear
Stark effect, and the first two terms yield the quadratic Stark
effect. The coefficients of the polynomials are evaluated from
the values ofW at 50 values ofE.
The Chebyshev expansion technique also works well for the

interaction energy for CH3I when HQ is included. However
for this case two Chebyshev series are used to accurately
approximateW. The coefficients of one series are found with
50 values ofE from 0 to 1.5 kV/cm and the other with 50 values
of E from 1 to 40 kV/cm. Twenty terms are used for each
series, and dW/dE is evaluated with the first series forE< 1.25
kV/cm and the second for greater fields.
For the ideal hexapole field, the electric field is axially

symmetric and has the magnitude

whereU0 is the half of the voltage difference between two
hexapole rods. We see that the maximum electric field occurs
for r ) r0 and has the magnitude 3U0/r0. For the field
represented by eq 22, the partial derivatives with respect tox
andy are easily given as

If W is accurately given by the linear Stark effect, and if the
productMK is negative, then both thex andymotions will be
harmonic. This observation has been the basis of experimental
methods for focusing symmetric top molecules in hexapole fields
for more than 30 years. We can now proceed to examine the

range of validity for the linear Stark effect and to see how
deviations from the linear Stark effect will affect focusing. We
will see that both strong fields and inclusion of hyperfine
coupling make significant changes in the forces that molecules
experience in hexapoles.

3. Results

3.1. Forces in Ideal Hexapole Fields.Since there is a simple
linear restoring force for a molecule with a linear Stark effect
in an ideal hexapole field, we will now compare the actual force
that a molecule will experience (exact calculation of the
interaction energy) with the force for the linear Stark effect.
Figures 1 and 2 give this comparison for the case in whichHQ

is neglected in CH3 I. These figures use recent literature values
for B and µ 15 for the quadratic Stark effect and the exact
calculations. Thirty (30) basis functions (differentJ ) are used.
Figure 1 gives results for the|111〉, |211〉, |212〉, and|222〉 states,
and Figure 2 gives results for the|311〉, |312〉, |313〉, and|323〉
states. The notation used here actually gives the absolute value
for each quantum number (K andM ), but the understanding is
that the productMK is negative so the|111〉 state could be|1
- 1 1〉 or |1 1- 1〉. If the linear Stark effect were valid for all
E, then eq 20 shows that each state would have the exact
interaction (solid line) as a horizontal line with (1/µ)(dW/dE)
) -MK/[J(J + 1)]. However, all of the states with the
exception of the|312〉 state show significant deviation from the
linear Stark effect expectation.
The figures also show the expected results (dashed straight

lines) when the quadratic Stark contribution (eq 21) is included
with the linear Stark effect. The figures show that there are
significant deviations from the quadratic Stark effect forE of
about 5 kV/cm for the|111〉 and |211〉 states, but that the
quadratic Stark effect provides a good approximation for states
with J ) 3. As expected the exact and second order Stark
interactions show the same deviation (increasing or decreasing)
with increasingE. We will see the consequences of positive
or negative deviations when we present the results of trajectory
calculations.

dW(1)

dE
) -µ MK

J(J+ 1)
) 〈cosθ〉 (20)

dW(2)

dE
) µΩ[[J2 - K2][J2 - M2]

J3(2J- 1)(2J+ 1)
-

[(J+ 1)2 - K2][(J+ 1)2 - M2]

(J+ 1)3(2J+ 1)(2J+ 3) ] (21)

E(r) )
3U0

r0 ( rr0)
2

(22)

∂E
∂x

)
6U0

r0
3
x

∂E
∂y

)
6U0

r0
3
y (23)

Figure 1. Effective force constants for exact and second order Stark
effects (eqs 20 and 21 in text) for the|111〉, |211〉, |212〉, and |222〉
states of CH3I. The solid lines indicate the exact interaction, and the
dashed lines indicate the interaction to second order.
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The force that a molecule experiences when the nuclear
quadrupole-electric field gradient interaction is included can
also be calculated. Here we use the nuclear quadrupole-electric
field gradient parameter (eqQ) -1934.0995 MHz) used by
Bulthuis et al.15 and 50 basis functions (differentJ andF ).
Figure 3 shows the interaction energy for the lowest states of
CH3I with K ) -1 andMF having values ranging from-7/2 to
+7/2 (note the that the same curves apply forK ) 1 when one
switches the sign of theMF labels!). This set ofMF values

gives the expected 18 states for the lowestF )3/2, F ) 5/2, and
F ) 7/2 states. The energies of the states are referred to the
zero field mean of the state energies and agree very well with
other results.15 The main differences with this work and the
earlier work15 is that they used the uncoupled representation
and also included nuclear spin effects for all nuclei. Inclusion
of the other nuclei changes the set ofF and MF quantum
numbers and also gives rise to a number of near or real crossings
that have energy splittings that are too small to effect the
parentage of a CH3I state as it travels through a hexapole.
Figure 3 uses solid lines to indicate the states that correlate

with the focusable state|111〉 for the case in which nuclear
quadrupole-electric field gradient interactions are neglected.
There are six, (2I + 1), such states withMF values that range
from-3/2 to+7/2 in unit increments. TheMF ) 7/2 state arises
from theF ) 7/2 states, while the others arise from theF ) 5/2
states. The two states with|MF| ) 7/2 show linear Stark effects,
and this is simply due to the fact that they do not couple with
any of the otherJ ) 1 states. The other five focusable states
with MF having values from-3/2 to +5/2 definitely show
significant deviations from the linear Stark effect at the relatively
small electric fields shown in this figure.
Figure 4 shows the effect ofHQ on the force that a CH3I

molecule experiences in a hexapole field. Not surprisingly the
MF ) 7/2 state focuses very much like theMJ )1 state would
focus without nuclear quadrupole coupling, but it is interesting
to note that the linear Stark effect force is actually about 1%
larger than it would be without the nuclear quadrupole coupling.
This is becauseHQ couples together differentJ even in the zero
field limit, and the electric field matrix elements add with
definite phases to these zero field matrix elements. The other
MF show less and less focusing for smallE asMF decreases.
We note thatMF ) -1/2 andMF ) -3/2 show defocusing for
small applied electric fields. We will see that this low-field
behavior of the forces whenHQ is included makes significant
differences in the transmission of a hexapole.
3.2. Trajectory Results. This section presents the results

of trajectory calculations for different states of CH3 I with
neglect or inclusion ofHQ. The hexapole is assumed to have
an ideal hexapole electric field: length,l ) 200 cm, and radius,

Figure 2. Effective force constants for exact and second order Stark
effects for the|311〉, |312〉, |313〉, and|323〉 states of CH3I. Solid and
dashed lines are as in Figure 1.

Figure 3. Exact Stark interaction energies for CH3I, including the
nuclear quadrupole-electric field gradient interaction for the I nucleus.
This diagram is drawn for the lowest energy states (nominally|111〉),
and theF values are indicated. The states that can be focused in
hexapole electric fields are indicated by solid lines. The states that
cannot be focused are indicated by dashed lines.

Figure 4. Effective force constants for the states in Figure 3 that can
be focused.
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r0 ) 0.7 cm. At the highest rod voltage,U0, the maximum
electric field is 34.3 kV/cm. The initial positions,x0 and y0,
are randomly chosen within a circle with radius) 0.005 cm,
and the velocity,Vx, is chosen from a Gaussian velocity
distribution centered at 300 m/s with a velocity width corre-
sponding to a translational temperature of 2 K. The velocities,
Vx0 and Vy0, are given random values between-0.06 Vz and
+0.06Vz. A molecule is transmitted through the hexapole if it
never has a radial displacement in the hexapole greater thanr0
and it leaves the hexapole withxl2 + yl2 e0.005 cm. Equations
19 are integrated with a fourth order Runge-Kutta routine22

for all orders of the Stark effect. Good accuracy results with
24 integration steps over the length of the hexapole. Runge-
Kutta integration is not necessary for the simple harmonic
motion that characterizes the linear Stark effect, but it is
convenient to use the same integration routine for all cases.

Figure 5 shows trajectory results for the|111〉, |211〉, and
|212〉 states of CH3I if HQ is neglected. Figure 6 shows the
trajectory results for the|311〉, |312〉, and |313〉 states. Each
focusing curve is calculated with 100 000 trajectories calculated
at each of 800 values forU0 separated by 0.01 kV. The focusing
curves are presented with enough smoothing to allow easy
differentiation. The results show that the maximum transmission
(one wavelength focus) for this hexapole implementation would
be about 2% if the first order Stark effect were valid. The
transmission is defined as the number of molecules that pass
through the exit aperture divided by the number that satisfy the
initial conditions for position and velocity. In each plot the
exact focusing curve is the solid line, the linear Stark effect
focusing is shown with a dotted line, and the quadratic Stark
effect focusing is shown with a dashed line. It is interesting to
note that the focused molecules have a very large increase in
their intensity over that expected from the solid angle subtended
by the exit aperture of the hexapole. If focusing were not
present, we would expect a transmission of only 1.36× 10-5%,

so the intensity enhancement is 150 000. Similar enhancements
for a different hexapole geometry have been obtained by Harren
et al.13

The |111〉 and|212〉 states show similar differences between
the focusing for the exact and linear Stark effects. Both of these
states show two peaks in the focusing curves over thisU0 range.
The lower voltage focus corresponds to a “half-wavelength”
focus criterion, where the molecule does not cross the axis of
the hexapole as it travels through. The higherU0 focus
corresponds to to a “one wavelength” focus criterion, where
focused trajectories cross the axis of the hexapole atz ) l/2.
Generally the one wavelength foci have larger intensity than
the half-wavelength foci, because the former correspond to larger
angular divergence of the incident beam (larger transverse
velocities). In some cases there are trajectories with3/2 or more
“wavelengths”. However, beam stops are often placed at
various positions interior or exterior to hexapoles to help prevent
unwanted transmission of molecules that are not focused. If a
beam stop were located atz) l/2, it would stop the transmission
of one wavelength focused molecules.
The linear Stark effect is more strongly focusing than the

exact Stark effect for both the|111〉 and|212〉 states, and there
is very little difference for the focus at lowU0. The stronger
focusing and the lack of differences for the low-U0 focus is
consistent with the data in Figure 1. ForU0 ) 2 kV the
maximum electric field is 8.6 kV/cm, and Figure 1 shows that
the linear and exact forces differ for this electric field by about
10%. The|211〉 state has stronger focusing with the exact Stark
effect, and this is again consistent with Figure 1. Figure 1 also
indicates that the force for givenE that acts on a|211〉 molecule
is less than that operating on a|111〉 or |212〉 molecule. Hence
the half-wavelength focus for|211〉 occurs at higherU0 values.
Figure 5 also shows that the one wavelength focus is quite

different for the linear and the exact Stark effects. The peak
transmission for the exact interaction is much lower than that
for the linear Stark effect. Also the exact transmission peak

Figure 5. Transmission of an ideal hexapole electric field for the|111〉,
|211〉, and |212〉 states of CH3I neglecting the nuclear quadrupole
interaction. The solid lines represent the focusing due to the exact
interaction. The dotted and dashed lines represent the focusing for the
Stark effect calculated to first and to second order, respectively.

Figure 6. Transmission of an ideal hexapole electric field for the|311〉,
|312〉, and |313〉 states of CH3I neglecting the nuclear quadrupole
interaction. The solid lines represent the focusing due to the exact
interaction. The dotted and dashed lines represent the focusing for the
Stark effect calculated to first and to second order, respectively.

Symmetric Top Molecules in Hexapole Electric Fields J. Phys. Chem. A, Vol. 101, No. 41, 19977669



has a large width and a long tail toward higherU0. The width
of the transmission peaks for the linear Stark effect is due to
the velocity spread of the molecular beam (chromatic aberra-
tion), but the additional broadening for the exact treatment is
due to the angular spread of the molecular beam (spherical
aberration). Molecules with large transverse velocities sample
the high-field parts of the hexapole where the forces are
definitely not harmonic. The amount of tailing at the high-U0

values will be significantly determined by the exact collimation
that is used in a particular experiment.
Figure 6 shows many of the same trends as Figure 5.

However, the|311〉 and|312〉 states are interesting. The|311〉
state has its half-wavelength focus at high fields, and this state
is more strongly focused in the exact Stark effect than in the
linear approximation. Now the exact peak is significantly
broadened, but it maintains good symmetry. The|312〉 state
shows very little difference between the exact and linear Stark
effect forces in Figure 2. This is very evident in the near
superposition of the focusing curves in Figure 6.
Figures 5 and 6 also show that there are differences between

focusing calculated with the exact Stark effect and that
calculated including terms to second order in the Stark effect.
The differences are particularly marked for the|111〉, |211〉 states
and the |311〉 state. The peak position, width, shape, and
magnitude may differ. However, there is little difference
between the exact and quadratic Stark trajectories for the|212〉
state, although there is a large difference between the first order
and exact calculations for the one wavelength trajectories. This
is consistent with the data in Figure 1 for this state.
Focusing curves can also be determined including the effects

of HQ, and such results are shown in Figure 7. The lower panel
indicates the differences in the focusing curves for the different
MF states that correspond to the|111〉 state without hyperfine

interactions. TheMF ) 7/2 state focuses differently from the
other fiveMF states. This focusing difference is not surprising
considering the results presented in Figure 4. TheMF ) 7/2
state behaves as if there were no hyperfine interaction. The
lower panel in Figure 7 shows that there is a significant shift to
higherU0 in the transmission peaks for the states withMF *
7/2. There is also significant tailing of the transmission to the
high-U0 side of the half-wavelength peak, and theMF ) 5/2
state is responsible for the small maximum atU0 ) 3.4 kV.
The top panel of Figure 7 compares theMF ) 7/2 focusing

curve with the average of the curves for all six focusableMF

states. ForU0 on the rising edge of the focusing peaks the
transmission will favor theMF ) 7/2 state. This gives the
possibility of producing a partially nuclear spin polarized
molecular beam of CH3I. The dashed line gives the percentage
of spin polarized CH3I, and useful transmitted beam intensity
can be obtained with more than 40% in theMF ) 7/2 state.
3.3. Cylindrical Rod Approximation for Hexapole Fields.

The trajectory results of the last section used an ideal hexapole
electric field. However, most experiments use hexapoles
constructed with cylindrical rods of diameter equal to half of
the radius,r0 of the hexapole or with rod radius,F0 ) 0.5r0.
This choice for the rod radius makes the curvature of the ideal
hexapole electric field equal to the curvature of the rods atr0.5

We can now investigate the implications of this approximation
for hexapole fields.
First we must find the electric field distribution for the

cylindrical rod configuration. The straightforward approach to
this task is to first solve the Laplace equation:

whereV is the potential at the point (x, y). Then the electric
field components,Ex andEy, can be calculated as follows:Ex
) ∂V/∂x andEy ) ∂V/∂y. The Laplace equation can be solved
with an expansion in Bessel functions, but it is easier to seek a
finite difference solution. Here a grid with 801 points on a
side was used to find the potential distribution. This corresponds
to a maximum radius within the square box of 400 points.
Initially the potential is specified by setting the potential to 0
for all points with radius greater than or equal to 400 and the
points corresponding to the cylindrical rod positions alternately
to the potential+1 or -1. Additionally the potential at the
origin is set toV ) 0. The centers of the rods (of radius) 80
grid units) are found on a circle of radius) 240 grid units.
This leaves the radius,r0, of the hexapole to be 160 grid units.
The resulting potential is for a hexapole field with a grounded
surface at 2.5r0, but previous work19,23indicates that the potential
within a hexapole or quadrupole is not significantly affected
by the location of the grounded surface. The finite difference
equations are solved by the simultaneous over relaxation (SOR)
technique22 to give the potential at each grid point.
The electric field components are determined with the

symmetric finite difference approximation for partial derivatives
(care must be taken to avoid points of fixed potential), and the
electric field magnitude is found asE ) [Ex2 + Ey2]1/2. The
magnitude of the electric field is plotted as a contour plot in
Figure 8. The plot shows that the magnitude of the electric
field shows good axial symmetry forr/r0 less than 0.5, but that
significant deviations appear for largerr/r0. In particular the
flattening of the contours indicate that there will be significant
tangential forces acting on a molecule with a linear Stark effect.
This finite difference approximation for the magnitude of the
electric field was used early in this work for trajectory

Figure 7. Transmission of the lowest energy states of CH3I in an ideal
hexapole electric field including the nuclear quadrupole interaction.
The bottom panel shows the transmission for eachMF state, and the
essentially uncoupledMF ) 7/2 state is indicated with a dotted line. All
of the otherMF states are indicated with solid lines. The MF ) 5/2 state
is responsible for the small peak at 3.4 kV/cm. The top panel compares
theMF ) 7/2 transmission (dotted line) with the average of allMF states
(solid line). The dashed line in the upper panel shows 10 times the
percentage of the total transmitted beam that is in the MF ) 7/2 state.

∂
2V

∂x2
+ ∂

2V

∂y2
) 0 (24)
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calculations, but the trajectory calculations presented below use
a function ofr andθ that is fitted to the finite difference results.
This function is the following:

Equation 25 provides a good fit to the electric field distribution
with a fractional error of only 0.1% of the maximum field
values. If only the first term is used, the fractional error is 0.7%,
and using two terms has an error of 0.2%. Other authors19,23

have fitted the radial and angular dependence of the potential
for multipole fields with expressions similar to eq 25, but for
this work fits to the electric field magnitude were done because
the field is everywhere positive and more slowly varying than
the potential. For the actual calculations of trajectories eq 25
is written in terms of the Cartesian equivalents ofθ andr. For
exampler3 cos(3θ) ) x3 - 3y2x.
Vonbun24 has derived equations to treat the electric field

distribution for 2n-pole devices that use cylindrical rods.
However, his electric fields differ significantly from the fields
calculated here. There is a cautionary remark in his paper that
says that the equations will only be good for rod radii,F0, that
are small with respect tor0. Apparently rod radii that are half
of r0 are too large for his equations to be accurate.
Figure 9 shows focusing curves for the|111〉, |212〉, and|313〉

states of CH3I, neglectingHQ for ideal and cylindrical rod
hexapoles. The ideal hexapole focusing curves are shown as
solid lines, and the calculations forF0 ) 0.5r0 andF0 ) 0.565r0
are shown as dotted and dashed lines, respectively. The
focusing curves show that cylindrical rod hexapoles have the
interesting feature that the peaks are more symmetrical than
they would be in ideal hexapoles. However, the overall
transmission for a hexapole constructed with cylindrical rods
with F0 ) 0.5r0 is significantly smaller than that for an ideal
hexapole. The focusing curves for a hexapole constructed with
cylindrical rods withF0 ) 0.565r0 have less difference from
those for the ideal hexapole. It is interesting to note that the
peaks occur at the same position for all of these hexapoles. This
figure shows thatF0 ) 0.5r0 cylindrical rod hexapoles are likely
to be preferred, because generally in state selective studies to

yield oriented molecules narrow symmetric peaks are more
important than slightly larger, but broader and less symmetric,
peaks.

4. Discussion

The preceding results show that serious errors may occur if
only the first order Stark effect is considered for trajectories in
hexapole fields. Errors may also occur if the Stark effect is
calculated only to second order. It is important to evaluate the
electric field-dipole interaction to high order and to consider
the effects of nuclear quadrupole moment-electric field gradient
couplings for molecules with heavy nuclei. The use of
cylindrical rods for hexapole construction can also give quite
different focusing curves than ideal hexapoles.
In this discussion we will first consider the application of

some of the results of this paper to the experimental hexapole
arrangement of Ohoyamaet al..12 To do this, a computer
program in Fortran has been written that calculates focusing
curves with user specification of the order for the Stark effect
and with user specification of experimental conditions. The
program allows the user to specify a point source at a distance
z ) 0 which may be either on axis or at an off-axis position
(x0,y0 ). The user can also specify thez axis position and
dimensions of on-axis collimation apertures (circular or rec-
tangular) before and/or after the hexapole. Thez position of
the start and end of the hexapole as well as itsr0 can be
specified. Finally the program allows specification of up to
three beam stops (z position, and circular or rectangular
dimensions). One beam stop can be specified before the start
of the hexapole, another within the hexapole, and the third
between the end of the hexapole and the detector or interaction
region. The program allows specification of velocity distribu-
tions of the form

Figure 8. Magnitude of the electric field for a hexapole constructed
of cylindrical rods with radiusF0 ) 0.5r0. The cylinders are found where
the contours are labeled “2.8”. The units of the electric field areU0/r0.

E(r, θ) )
U0

r0 ( rr0)
2[2.9498398- 0.1122901( rr0)

6
cos(6θ) -

0.0376238( rr0)
12
cos(12θ)] (25)

Figure 9. Transmission of the|111〉, |212〉, and|313〉 states of CH3I
for exact Stark interaction with neglect of nuclear quadrupole coupling
in ideal hexapole fields (solid lines) and in two cylindrical rod
approximations:F0 ) 0.5 r0 (dotted lines) andF0 ) 0.565r0 (dashed
lines).

f(V) ) Vn exp(-m(V - V0)
2

2kT ) (26)
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wheren,m, V0, andT can be specified. Copies of this program
can be obtained via e-mail from the author.
Figure 10 shows the focusing curves for several states of CH3I

using the hexapole, collimation, and molecule speed parameters
of Ohoyamaet al.12 For these experiments one beam stop is
placed before the hexapole, and this beam stop blocks some of
the “half-wavelength” trajectories. Figure 10 shows focusing
curves calculated with the exact Stark effect and with the Stark
effect calculated to first and to second order. The transmission
for these experimental simulations is defined as the number of
molecules that pass through the detector aperture divided by
the number of molecules that would pass through the initial
collimating aperature if the beam stop were not present. These
curves can be compared with the calculations for second order
and linear Stark effects in ref 12 (Figure 4). We expect that
the present results for the linear and quadratic Stark effect should
agree with those of Ohoyamaet al. However, the linear Stark
focusing peaks of Ohoyamaet al.are only 70% of the size for
those in the present work. The reason for this discrepancy is
that the angular distribution of molecules entering the hexapole
is incorrectly estimated by Ohoyama. Ohoyamaet al.perform
the angular integration without the sinθ solid angle factor that
accounts for the fact that there are more molecules entering with
off-axis angles betweenθ andθ + dθ for largerθ. With the
Ohoyamaet al. experimental arrangement the inclusion of the
correct angular averaging makes a large effect because mol-
ecules can only be transmitted through the hexapole if they have
large enough angles to go around the beam stop. This averaging
problem makes it difficult to compare the present linear,
quadratic, and exact Stark effect calculations with the linear
and quadratic results of Ohoyamaet al.. However, we can make
some remarks about the present results in Figure 10. There is
very little difference between the quadratic and exact focusing
curves for the|212〉, |313〉, and|312〉 states. Some difference
can be seen for the|111〉 state, and the most difference is seen

for the|211〉 state. For this experimental arrangement the largest
differences between the exact and second order calculations is
seen for a state where the interaction is increased when higher
order Stark effects are included. The linear and exact Stark
effects for|312〉 give the same focusing curve, which can be
easily explained by the results given in Figure 2. Figure 10
shows that it is important to use exact or high-order estimates
forW for this experimental arrangement. Significant errors are
introduced ifW is calculated only to first order.
The difference between focusing curves that are calculated

with the linear and exact Stark effects will depend on the
experimental collimator positions and dimensions and on the
position of the beam stops. If no beam stops are used with
small collimators, there should be little difference between the
linear and exact Stark trajectories because the molecules will
always travel near the hexapole axis where the electric fields
are small. If larger collimators are used without beam stops,
results similar to those in Figures 5 and 6 should be obtained.
The half-wavelength peaks at small values ofU0 should have
less difference between the exact and linear Stark trajectories,
and the peaks at largerU0 should show larger differences
between the linear and exact Stark trajectories. If a beam stop
is inserted near the middle of the hexapole, it will tend to block
one wavelength trajectories and the half-wavelength trajectories
that are transmitted will tend be less influenced by the difference
between the linear and exact Stark forces.
We have seen the hyperfine interactions can also significantly

influence the trajectories of molecules in hexapole fields. Such
interactions decrease the restoring force in small electric fields,
so that there is less focusing whenever the molecules are near
the hexapole axis. This observation is true for most of theMF

states. However, theMF state with the largest value for a given
J focuses as if hyperfine interactions were not present. This
allows the production of partially nuclear spin polarized beams,
and it also explains why there is always some orientation that
is preserved even with low guiding electric fields (see ref 15).
However, we expect that the position of beam stops and the
size of collimating apertures will affect the importance of
hyperfine interactions on trajectories. If the collimation keeps
all of the molecules near the hexapole axis, there should be a
large effect of the hyperfine interactions on the focusing curves,
because most of the molecular movement will be in regions of
low applied electric field. However, if a beam stop is placed
before the hexapole so that it blocks half-wavelength trajectories,
the effects of the hyperfine interaction should be smaller because
most of the trajectories will be in regions with larger electric
fields.
The experimental simulations in Figure 10 ignore the effects

of hyperfine interactions, and such interactions would clearly
have importance for molecules such as CH3I, especially in the
|111〉 state where the rotational spacing is smallest.
The final comments in this discussion concern the construc-

tion of hexapoles with cylindrical rods. We have already seen
that there are significant differences between exact Stark
trajectories in ideal hexapoles and in cylindrical rod hexapoles
where the radius of the rods,F0, is half of the radius of the
hexapole,r0. The trajectories differ primarily because of the
large coefficient of the (r/r0)6 cos(6θ) term in eq 25. This choice
for the value ofF0 is the most commonly used, but other values
have been used. Kramer and Bernstein2 usedF0 ) 0.667r0,
and Everdijet al.19 suggest usingF0 ) 0.56028r0. The latter
value was obtained from an analysis like the one done earlier
by Denison23 for quadrupole electric fields. Denison observed
that the magnitude of the (r/r0)4 cos(4θ) term in the quadrupole
electric field (expansion analogous to eq 25) depended on the

Figure 10. Transmission of a hexapole focusing arrangement for CH3

I with the experimental dimensions of ref 12. The dotted and dashed
lines assume focusing calculated with the Stark effect calculated to
first and to second order, respectively. The solid lines show the focusing
for the exact Stark effect. Hyperfine interactions and the effects of the
cylindrical rod approximation to the hexapole field are neglected.
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ratio of F0 to r0. In fact the coefficient of this term vanished
for some value of the ratio. Everdijet al.19 used the same
argument for hexapole fields to deduce the ratio for which the
(r/r0)6 cos(6θ) will vanish.
Figure 11 presents the results of fits to the electric field for

cylindrical rod hexapoles withF0 to r0 ratios between 0.46 and
0.65. The electric fields are fitted to the following equation:

It is easily seen that thea1 term will vanish forF0/r0 near 0.565.
Figure 11 also shows a line for a fit to the values fora1 for
different values of the radius ratio. This fit is given by the
following equation:

The fit of this equation to thea1 data yieldsa ) 2.61( 0.10,
b ) -1.78( 0.18, andc ) 0.5650( 0.0005. It appears that
F0 should be 0.565r0 for the best approximation of a hexapole
field with a cylindrical rod hexapole. This is close to the value
given by Everdijet al.19

Figure 11 also gives the dependence of thea0 term on theF0
to r0 ratio.

wherea) 2.500( 0.027,b) 1.171( 0.096, andc) -0.546
( 0.087. It is interesting to note that thea0 term is equal to 3
for F0/r0 slightly greater than 0.6.
Finally values fora2 are presented in Figure 11. Here

although the values are precisely determined for given ratios
of F0 to r0, the values fora2 show some scatter from a simple
curve. However, the plotted values should suffice for determin-
ing the appropriate values for this parameter that will represent
the electric field magnitude for a given hexapole construction.
The scatter in the values fora2 may originate in the fact that a
given grid for the finite difference calculation will not allow
very precise definition of the cylindrical rod boundaries.
Figure 9 shows that hexapoles withF0 ) 0.565r0 have

focusing curves that more closely approximate focusing curves
for ideal hexapoles than hexapoles withF0 ) 0.5r0.
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Böwering, N.Phys. ReV. A 1996, 53, 1457.
(12) Ohoyama, H.; Ogawa, T.; Kasai, T.J. Phys. Chem.1995, 99, 13606.
(13) Harren, F.; Parker, D. H.; Stolte, S.Comments At. Mol. Phys.1991,

26, 109.
(14) Che, D.-C.; Ogawa, T.; Ohoyama, H.; Kasai, T.; Kuwata, K.Bull.

Chem. Soc. Jpn.1995, 68, 771.
(15) Bulthuis, J.; Milan, J. B.; Janssen, M. H. M.; Stolte, S.J. Chem.

Phys.1991, 94, 7181.
(16) Bulthuis, J.; Stolte, S.J. Phys. Chem.1991, 95, 8180.
(17) Gandhi, S. R.; Curtiss, T. J.; Xu, Q.-X.; Choi, S. E.; Bernstein, R.

Chem. Phys. Lett.1986, 132, 6.
(18) Cho, V. A.; Bernstein, R. B.J. Phys. Chem.1991, 95, 8129.
(19) Everdij, J. J.; Huijser, A.; Verster, N. F.ReV. Sci. Instrum.1973,

44, 721.
(20) Zare, R. N.Angular Momentum; Wiley: New York, 1988.
(21) Gordy, W.; Cook, R. L.MicrowaVe Molecular Spectra; Wiley:

New York, 1970.
(22) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.

Numerical Recipes in Fortran; Cambridge University Press: Cambridge,
U.K., 1992.

(23) Denison, D. R.J. Vac. Sci. Technol.1971, 8, 266.
(24) Vonbun, F. O.J. Appl. Phys.1958, 29, 632.

Figure 11. Coefficients in the expansion of the electric field magnitude
for different cylindrical rod approximations for a hexapole field. The
coefficientsa0, a1, anda2 are defined by eq 27. The lines drawn through
the points fora0 anda1 are defined by eqs 29 and 28, respectively.

E(r,θ) )
U0

r0 ( rr0)
2[a0 + a1 ( rr0)

6
cos(6θ) + a2( rr0)

12
cos(12θ)]

(27)

a1 ) (a+ b(F0/r0))((F0/r0) - c) (28)

a0 ) (a+ b(F0/r0) + c(F0/r0)
2) (29)
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